4 research outputs found

    2,3,7,8-Tetrachlorodibenzo-p-dioxin modifies expression and nuclear/cytosolic localization of bovine herpesvirus 1 immediate-early protein (bICP0) during infection

    No full text
    Our previous studies have demonstrated that 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD) increases Bovine Herpesvirus 1 (BHV-1) replication through a dose-dependent increase in cytopathy and increased viral titer. Furthermore, TCDD was able to trigger BHV-1-induced apoptosis by up-regulating the activation of initiator caspases 8 and 9, as well as of effector caspase 3. Since TCDD activates caspase 3 after 4 h of infection, we have hypothesized an involvement of BHV-1 infected cell protein 0 (bICP0) in this process. Such protein, the major transcriptional regulatory protein of BHV-1, has been shown to indirectly induce caspase 3 activation and apoptosis. In order to elucidate the role of bICP0 in this apoptotic pathway, here we have analyzed the effects of TCDD on bICP0 expression. Following infection of bovine cells with BHV-1, we detected apoptotic features already at 12 h after infection, only in TCDD exposed groups. Furthermore, in the presence of different doses of TCDD, we observed a time-dependent modulation and increase of bICP0 gene expression levels, as revealed by RT-PCR analysis. Western blot analysis and immunocytochemistry revealed that TCDD induced an increase of bICP0 protein levels in a dose-dependent manner, compared to unexposed groups. Moreover, Western blot analysis of nuclear and cytosolic fractions of infected cells revealed that TCDD anticipated the presence of bICP0 protein in the cytoplasm. In conclusion, both the increase of replication of BHV-1 and anticipation of BHV-1-induced apoptosis could be the result of a relationship between TCDD and bICP0. © 2010 Wiley-Liss, Inc

    Human Neural Stem Cell-Based Drug Product: Clinical and Nonclinical Characterization

    No full text
    Translation of cell therapies into clinical practice requires the adoption of robust production protocols in order to optimize and standardize the manufacture and cryopreservation of cells, in compliance with good manufacturing practice regulations. Between 2012 and 2020, we conducted two phase I clinical trials (EudraCT 2009-014484-39, EudraCT 2015-004855-37) on amyotrophic lateral sclerosis secondary progressive multiple sclerosis patients, respectively, treating them with human neural stem cells. Our production process of a hNSC-based medicinal product is the first to use brain tissue samples extracted from fetuses that died in spontaneous abortion or miscarriage. It consists of selection, isolation and expansion of hNSCs and ends with the final pharmaceutical formulation tailored to a specific patient, in compliance with the approved clinical protocol. The cells used in these clinical trials were analyzed in order to confirm their microbiological safety; each batch was also tested to assess identity, potency and safety through morphological and functional assays. Preclinical, clinical and in vitro nonclinical data have proved that our cells are safe and stable, and that the production process can provide a high level of reproducibility of the cultures. Here, we describe the quality control strategy for the characterization of the hNSCs used in the above-mentioned clinical trials
    corecore